讲座主题: Sample efficient quantum state tomography

讲座人: 俞能昆

讲座日期: 2021-10-21

讲座时间: 15:00

主办单位: 数学与统计学院

地点:腾讯会议 ID: 708509115

讲座内容简介:

It is fundamental to decide how many copies of an unknown mixed quantum state are necessary and sufficient to determine the state. 1. We give a theoretical measurement scheme (POVM) that requires $O(dr/\delta)\ln(d/\delta)$ copies to estimate ρ to error δ in infidelity, and a matching lower bound up to logarithmic factors. This implies $O((dr/\epsilon^2)\ln(d/\epsilon))$ copies suffice to achieve error ϵ in trace distance. 2. For independent (product) measurements, we show $\Omega(dr^2/\delta^2)\ln(1/\delta)$ copies are necessary in order to achieve error δ in infidelity. 3. For Pauli measurements, we provide a scheme using $O(\frac{10^n}{\epsilon^2})$ copies to achieve error ϵ in trace distance. 4. We also study the "quantum overlapping tomography" problem for the recovery of all k -body reduced density operators and show the sample complexity is $O(\frac{10^k \cdot \log(\binom{n}{k})/\beta}{\epsilon^2})$ for $1 - \delta$ being the confidential level, and ϵ being the trace distance error. Moreover, we prove that $\Omega(\frac{\log(n/\delta)}{\epsilon^2})$ copies are needed. In other words, for constant k, highly entangled measurements are not asymptotically more efficient than Pauli measurements, even one has access to all copies at once.

讲座人简介:

俞能昆:悉尼科技大学量子计算中心高级讲师,毕业于清华大学计算机科学与技术系。曾获得澳大利亚科学院拉塞尔奖,华莱士奖,oopsla杰出论文奖,和 pldi杰出论文奖。